Comparative Forecasting Models for Optimizing MSME Production: A Time Series Analysis
PDF

Keywords

Sales forecasting
Moving Average
Exponential smoothing
Production planning
Inventory policy
MSMEs
Indonesia

How to Cite

Suryaningsih, S., Usman, F., & Pinjaman, S. (2025). Comparative Forecasting Models for Optimizing MSME Production: A Time Series Analysis . Hasanuddin Economics and Business Review, 9(2), 1–12. https://doi.org/10.26487/hebr.v9i2.6333

Abstract

Accurate short-horizon forecasting is essential for Indonesian food-service MSMEs that plan production with perishable inputs and holiday-driven demand swings. Using monthly sales from Martabak Tip Top, Tarakan (December 2023–November 2024), this study compares a three-period moving average with single exponential smoothing under a one-step-ahead out-of-sample evaluation on a common test window. Accuracy is assessed with mean absolute percentage error (primary), mean absolute error, and root mean squared error. Single exponential smoothing delivers lower error than the moving average during the test period (MAPE 8.0 per cent versus 9.2 per cent) and projects a December requirement of about 1,710 units (moving average: about 1,720). The head-to-head evidence in an emerging-market MSME setting shows that giving greater weight to recent observations provides a more reliable operational signal than equal-weight averaging when modest level shifts occur around public holidays. Practically, using single exponential smoothing as the default planning input supports tighter bills-of-materials conversion, leaner safety-stock and reorder-point settings derived from observed forecast errors, and steadier labour scheduling, thereby reducing stockouts and waste while improving working-capital efficiency. The approach is transparent and spreadsheet-ready, offering actionable guidance for operations, finance, and policy audiences concerned with MSME performance in developing-region contexts.

https://doi.org/10.26487/hebr.v9i2.6333
PDF

References

Alam, M. (2022). Strategic operations and production management. Routledge.

Frazier, G. B. (2021). Modern operations management. McGraw-Hill Education.

Gaspersz, V. (2023). Produktivitas dan peramalan permintaan dalam perencanaan produksi di era digital. PT Gramedia Pustaka Utama.

Hanke, J. E., & Wichern, D. W. (2021). Business forecasting (11th ed.). Pearson.

Heizer, J., & Render, B. (2021). Operations management: Sustainability and supply chain management (13th ed.). Pearson.

Hyndman, R. J., & Athanasopoulos, G. (2020). Forecasting: Principles and practice (3rd ed.). OTexts. https://otexts.com/fpp3/

Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.). OTexts. https://otexts.com/fpp3/

Coordinating Ministry for Economic Affairs of the Republic of Indonesia. (2021). Micro, small, and medium enterprises as a key pillar of Indonesia’s economy. https://ekon.go.id/publikasi/detail/2969/umkm-menjadi-pilar-penting-%20dalam-perekonomian-indonesia

Peramalan penjualan kalender menggunakan algoritma time series pada Toko Buku Alief Kediri. (2021). Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 5(2), 222–229. https://doi.org/10.29407/inotek.v5i2.1062

Pesireron, A. G., Namkatu, A., Timisela, A. F. C., Belatu, O. B., Buton, T., & Lausepa, R. V. (2024). Memperkuat daya saing UMKM: Peramalan penjualan warung Ibu An dengan metode least square. Jurnal Tagalaya Pengabdian Kepada Masyarakat, 1(3), 277–284. https://doi.org/10.71315/jtpkm.v1i3.69

Petropoulos, F., Makridakis, S., & Spiliotis, E. (2021). Statistical and machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 16(3), e0248784. https://doi.org/10.1371/journal.pone.0248784

Ribeiro, M. H. D. M., da Silva, R. G., & Mariani, V. C. (2020). Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, Solitons & Fractals, 135, 109853. https://doi.org/10.1016/j.chaos.2020.109853

Sitohang, P., Muliyani, M., & Siahaan, D. (2022). Penerapan analisis tren time series moment dalam penentuan anggaran penjualan terhadap peningkatan penjualan UMKM PD. Parfume. Prosiding Seminar Nasional Sosial, Humaniora, dan Teknologi. https://journals.stimsukmamedan.ac.id/index.php/senashtek/article/view/249

Subagyo, T. (2022). Metode peramalan dalam manajemen produksi (3rd ed.). Penerbit Graha Ilmu.

Taylor, J. W. (2021). Forecasting: Theory and practice (2nd ed.). Wiley.

Zhou. (2022). Hybrid moving average and machine learning models for time series forecasting: An empirical evaluation. Applied Soft Computing, 105, 107276. https://doi.org/10.1016/j.asoc.2021.107276

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Hasanuddin Economics and Business Review