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ABSTRACT

Consider a team with two types of agents: targets and observers. Observers are aerial UAVs that observe targets
moving on land with their movements restricted to the paths that form a planar graph on the surface. Observers
have limited range of vision and targets do not avoid observers. The objective is to maximize the integral of the
number of targets observed in the observation interval. Taking advantage of the fact that the future positions of
targets in the short term are predictable, we show in this article a modified hill climbing algorithm that surpasses
its previous versions in this new setting of the CTO problem.
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1. INTRODUCTION

Unmanned vehicles (UAVs), whether

terrestrial, aquatic or aerial, such as drones,

already accumulate a variety in civil applications

or military defense and attack. Civil applications

include environmental monitoring [1], medical

assistance [2], transport of goods [3], electronic

surveillance [4], and aerial data surveys using

photogrammetry techniques or LIDAR [5, 6]

sensors. Military applications of UAVs already

reported include mission of attack [7], defense

against attacks by other UAVs [8], [9], [10],

reconnaissance [11] and border surveillance [12].

UAVs are a type of agents suitable for use

as observers. The Cooperative Target

Observation (CTO) problem domain is one in

which a team of moving surveillance robots, for

example, drones, must maintain the observation

of another target robot team in motion, in order to

maximize the Average Number of Observed

Targets (ANOT ) in the period.

The CTO problem domain has a variety of

instances depending on the type of movement of

the targets, resource constraints, the interaction

between targets and observers, and the stated

specific objective. The survey in [13] presents a

classification of problems related to CTO.

In this paper, a new setting and algorithm

for the cooperative targets observation problem is

presented. In the configuration faced in this work

the targets move on a planar graph and their future

positions can be predicted. For a concrete

example, consider an urban scenario in which N

aerial UAVs, each with limited observation radius

R, must patrol M > N targets moving on land. The

movement of the UAVs is free while the

movement of targets is restricted to certain paths,

such as urban roads. Targets are friends who can,

for example, be attacked by enemies. In this

scenario, it can be assumed that the positions of

the targets and the observers, obtained from GPS,

are transmitted to a central command, and that the
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targets are collaborative, not avoiding the

presence of the observers.

In this work an algorithm for this problem

is developed which adds knowledge of the

domain through heuristics and targets positions

prediction to improve the performance of the

basic hill climbing algorithm and another already

present in the literature.

The CTO problem has been studied in

more recent works as in [14], [15], [16], [17].

However, these publications do not address the

target mobility configuration introduced in the

present work.

The work is organized as follows: Section

2 presents the methods used in order to solve the

problem, Section 3 shows the results obtained and

Section 4 concludes

2. METHODOLOGY

In [18], Parker formally defines a more

general version of this problem, called

CMOMMT, for Cooperative Multi-Robot

Observation of Multiple Moving Targets, in which

the targets are not collaborative and the

environment is observable. The objective function

to be maximized for the observer team is the

Average Number of Observed Targets (ANOT ) in

the simulation period, defined by the expression:

where A = {aij} is an N  × M  matrix with

the aij = 1 if target j is in the sensor range of the

observer i and and 0 when not, and T is the

number of time-steps of the simulation. The

operator WN on a column of the A matrix

causes each observed target to be counted only

once. Since in this work the number of targets is

constant in each simulation, M = 24, the

percentage index, normalized by the number of

targets in each execution, was used, ρ = ANOT .

Luke et al [19] defines the CTO problem

as a simplified version of the CMOMMT

problem in [18] in which the targets are

collaborative and the environment is fully

observable. For this problem he proposes

centralized and decentralized algorithms, based

on k-means and hill climbing, to calculate the

trajectory of the observers.

The present work is based on the definition

in Luke et al. and the centralized algorithms

proposed there. The k-means and hill climbing

versions in [19] are taken as baselines for

performance comparison with the proposed

variant front of the new environment

configuration and target movement.

An intuition about the behavior of

solutions to the CTO problem, already present in

works [18], [19], is that if two state-space

configurations of observer and target positions

result in the same value of the index ρ defined in

the equation (1) then the one with larger the total

area covered by the sensors, ie, the one in which

the average distance between the observers is

higher, is preferable. This notion is used in [18],

[19] to construct heuristics to solve the problem.

In [19], Luke et al. use this notion to create a

variant of the k-means algorithm and compare its

performance against that of a hill climbing (HC).

In the present work a variant of this notion is used

to add a heuristic step to a hill climbing algorithm

and its performance is compared to the k-means

and hill climbing described in Luke et al. [19].

This algorithm will be denoted by HC+heuristic

or HC+h.

However, although there is an improvement

in the HC+h algorithm over K-means and HC, it

can be seen that this algorithm does not yet use all
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the information available in that environment. In

fact, the targets’ future positions are predictable in

the short term as they move over a graph. The

HC+heuristic+prediction (HC+hp) algorithm

works in the same way as HC+h, however, instead

of using the target’s current positions to determine

the next observer destination, HC+hp uses

prediction of the target positions some steps

forward to assess the merit of the solutions found.

The difference is that in HC+h, observers run

behind to follow targets and also do not anticipate

changes in their directions when they reach a

vertex of the graph, while in HC+hp, observers

anticipate the movements of targets by making

predictions.

The HC+hp algorithm is described here. The

reader is referred to article [19] for a description of

the other two algorithms used in performance

comparison. One step of HC+hp is as follows:

1. Input: the current state vector, in the state space

of the positions of observers and targets, and its

value of ρ, denoted ρcur.

2. Output: the next state vector, updating the

destinations of the observers.

3. Generate a prediction of target positions γ/2

steps ahead.

4. Generate 100 feasible random perturbations of

the vector of states of the observers with

uniform distribution U[-10,10] at the X and Y

coordinates. Calculate the index ρ, denoted

ρnew, for each new vector of positions. Adopt

the best new generated position evaluated by

the criterion ρnew, if it exists.

5. If a new best position was not generated,

calculate ρob, the average distance between

observers for the disturbed positions with ρcur

= ρnew. Adopt the one with the greatest ρob.

Figure 1: Simulation snapshot
in the MASON environment.

6. If a new position with the highest ρob was not

generated, keep the previous observer path in

this update cycle.

After generating a new prediction of target

positions in step 2, Step 4 is the basic hill climbing

algorithm. Steps 5 and 6 implement the heuristic

based intuition described in the previous

paragraphs.

Preciction: To reduce the cost of communication

between the central command base and the

observers, a command to update the destinations

of the observers is sent only every γ steps.

Observers follow the indicated path until they

receive a new comment. Note that the predicted

positions of the targets are included in the

calculation of ρ in Equation 1 which is the merit

index of a candidate solution. The prediction

mechanism is simple because the environment is

fully observable with the central command

providing an environment map. Keeping a record

of the last positions of the targets at given speeds,

it is easy to predict the position γ/2 steps ahead

when it is known that the movement is restricted

to the paths in the graph. Uncertainty arises when

there is a vertex within the γ/2 steps ahead. In this

case, the prediction chooses randomly, with equal

probability, one of the possible paths.

The movement of the observers happens in free

space while the movement of targets is restricted
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to being on a planar graph. In the experiments of

this article the targets move is random: when a

target arrives at a vertex it makes equally probable

choice between neighboring vertices to follow.

3. RESULT AND DISCUSSION

It should be concise and clear. The

performance was analyzed by simulation in the

MASON [20] environment. Observers walk in the

direction indicated by the last received command.

The central command does not need to update the

trajectory of observers at each step of time. The

observer trajectory update (UR) command rate is

a relevant parameter because each update places a

communication load on the system. The

sensitivity to these parameters also measures the

robustness of the system, in latu sensu, to losses

of messages and other updating faults.

To generate planar graphs, a two-step

procedure was used: first, the vertices were

generated in random positions and then a

Delaunay triangulation algorithm was applied to

construct the edges in order to result in a planar

graph. All experiments were performed with

graphs of 40 vertices.

Figure 1 shows a simulation snapshot in the

MASON environment. It shows a generated

random graph, circles representing the range of

the observers’ sensors, and the points on the edges

of the graph are moving targets.

In the tests, the simulation used the same

parameters adopted in [19]: a rectangular 2D

space, with 150x150 units dimension, where

targets and observers are inserted; each

experiment has a limited time of 1500 time-steps;

observers move at 1 unit per time-step, while the

targets can move at various speeds RV = 0.1, 0.25,

0.5, 0.75, 0.9 unit per time-step; the sensor range

in each observer can be SR = 5, 10, 15, 20, 25

units; and the rate of updating of the trajectory of

the observers varies in the set UR = 1, 0.5, 0.25,

0.1, 0.05; M = 24 and N = 12. To collect results,

each configuration was simulated 20 runs, each

with initial random configuration and independent

random number generator seeds. For abbreviation,

the algorithms will be referred to as k-means[19],

HC[19] and HC+heuristic or HC+h - for this

work. The results are shown in Table 1

Table 1 is divided into three parts, where, in each
part is varying one of the parameters RV, SR or UR,
keeping the others fixed at the median of their set of
values. An analysis of this table is as follows.

Table 1: The average performance ρ of the HC +
heuristic (HC+h) algorithm proposed against K-means
+ heuristic and Hill Climbing evaluated in [19], when
it varies: sensor range (SR), relative speed between
observers and targets (RV),or the update rate of the
trajectory of the observers (UR). As the case,
UR=0.25, RV=0.50 or SR=15 when the other
parameter is varying, N=12 and M=24.

Comparing the rows of the table to the three

algorithms, in each comparable region, it is

notable that:

The HC+h algorithm presents superior

performance for all scenarios.When the relative

velocity (RV) is low or the sensor range (SR) is

high or both simultaneously, the difference in

algorithm performance is lower. These are less

challenging scenarios.

In the high relative velocity (VR) or low range
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sensor (SR) challenging situations or both

simultaneously, it is when the performance of

HC+h presents greater resilience while those of

the others degrade.

The observer path update rate (UR) strongly

affects all algorithms although HC+h maintains

performancehigher than the others. The standard

deviations between batches of 20 runs did not

differ significantly for the algorithms. The total

processing time for Table 1 was 93 hours. For

real-time execution the maximum duration of

one cycle of theHC + h algorithm was 2 s. These

numbers are referred to a CORE I7 processor.

4. CONCLUSIONS

A new configuration of the CTO

problem, with the movement of the targets on

a planar graph, and two new variants of a

centralized algorithm to control the trajectory

of the observers are presented and evaluated in

this work. A hypothetical motivational

example of application was presented in which

the edges of the graph are the traffic lanes of

an urban region. Performance was analyzed by

simulation in MASON [20]. Comparative

performance table by varying the critical

parameters of the problem, ie the range of the

sensors (SR), the relative speed between

observers and targets (RV), and the update rate

of the trajectory of the observers (UR) show

that the proposed algorithm variants, HC+h

and HC+hp, improved the average

performance and slightly reduced the variance

against the baseline versions published in [19].

The improvement going from HC+h to HC+hp

is the profit of the prediction.

Some work limitations are immediately

identified and point to future work. The first is

that the proposed algorithm, just like the

original, does not construct target motion

model. It is believed that incorporating this

feature and then applying reinforcement

learning to the trajectory of observers will

improve the effectiveness of the algorithm. The

second is to obtain and execute with real

scenario data to counter performance with that

obtained in simulation. [19]
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