The Ideal Form of the Skew Polynomial Ring Over Quaternion

J. Djuddin ${ }^{1}$, A. K. Amir ${ }^{1}$, M. Bahri ${ }^{1}$
Mathematics Department, Faculty of Mathematics and Natural Sciences Hasanuddin University
Email: amirkamalamir@yahoo.com

Abstract

This research was carried out in order to develop theory about the skew polynomial ring over non-commutative ring. This study aimed to find the ideal form of the skew polynomial ring over the quaternion. The research method was the library study. In order to find the ideal form of the skew polynomial ring over the quaternion, the first thing to do was finding the endomorphism form in the quaternion ring, which was symbolized by σ, and eleven endomorphisms σ were obtained. The research results every ring had two ideals form. In general, the rings which had the identically ideal forms were categorized into three: three rings were identical, two rings were also identical, and the rest six rings had identical forms too.

Keywords: commutative ring, endomorphism, non-commutative ring, quaternion, skew polynomial ring.

Article history: Received 7 May 2016, last received in revised 21 May 2016.

INTRODUCTION

Ring is all about one set with two operations, addition (+) and multiplication (x). If the multiplication of the every two elements of the ring is commutative, it is called commutative ring. If the multiplication of a rings element is not commutative, it is called non-commutative ring.

Ore [8] introduced the skew polynomial ring, the development of ring. The skew polynomial ring contains a set of skew polynomials with non-commutative
multiplication. For example, the skew polynomial ring over real numbers is the set of polynomials $a_{n} x^{n}+a_{n-1} x^{n-1}+$ $\cdots_{+} a_{2} x^{2}+a x+a_{0}$ where x is an unknown variable and $a_{i} \in \square$ with the multiplication rule $x a \quad \sigma a x \quad \delta a$ for each $a_{i} \quad$ while σ is an endotmorphism and δ is $\stackrel{\epsilon}{\sigma}$-derivative.

Amir [3], it says that the researchers of skew polynomial ring can be divided into three groups. The first group develops the class of skew polynomial ring to be a bigger class of ring. The second
group uses skew polynomial ring to be more applicative, while the third group observes the structure of the skew polynomial ring by using various base rings. In the dissertation, Amir is in the third group with the base ring in Dedekind domain.

Amir [1] has discussed the characteristics of the σ-prime ideal and the skew polynomial ring. Amir [2] discussed the characteristics of the ideal in the skew polynomial ring. Then, he improved his research [3] in the skew polynomial ring where the base ring is commutative ring in Dedekind domain. Amir et al [4] found the ideal form in the skew polynomial ring with the different commutative base ring and Amir [5] started to expand the skew polynomial ring in non-commutative ring, quaternion. In his research, he discovered one of endomorphism forms of the quaternion ring which later became a ring. Because of those reasons, we decided to develop Amir's research about the skew polynomial ring with non-commutative base ring, quaternion.

Quaternion was found by Hamilton. For his merit, the quaternion is denoted by \mathbb{H}. The purpose of this research is to find the ideal form of the skew polynomial ring which is quaternion base ring.

There are some definitions supporting this research. They are homomorphism ring, endomorphism, and ideal. Based on Rotman [9], ring is a set with two binary operations, multiplication and addition, satisfying the rule as an abelian group, multiplicatively closed, satisfying the associative and distributive property of multiplication, and having inverse for multiplication.

Fraleigh [6] defined homomorphism group as a function mapping G to G^{\prime} that is $\varphi: G \rightarrow G^{\prime}$ with the rule $\quad \varphi(a b)=\varphi(a) \varphi(b), \forall a, b \in G$ where $a b$ multiplication satisfies the operation in the left side of G and $\varphi(a) \varphi(b)$ satisfies the operation in the right side of G, The mapped homomorphism ring is ring. For example,

$$
\begin{aligned}
& \mathcal{R} \quad \square^{\prime} \quad \forall a, b \in \\
& \text { satisfies } \varphi(a+b)=\varphi(a)+{ }^{\varphi}{ }^{b} \text {) and } \\
& \varphi(a b)=\varphi(a) \varphi(b) \\
& \text {, mapping }
\end{aligned}
$$

is homomorphism ring.
Rotman [9] Stated that a homomorphism group is said to be endomorphism if is a function associating from G to itself whereas a homomorphism ring is said to \mathcal{K} be endomorphism ring if it relates ring to itself.

The definition of id ${ }^{2}$ al $I 6 y$ Fadeigh [6] is a sub-ring of ring if and
$r a \in I, \forall a \in I, r \in \square$. If I is an ideal in \mathcal{R}, the multiplication between the elements of I and the elements of \mathcal{R} must obtain an element in I.

According to McConnel and Robson [7], \square is a ring with identity $1, \sigma$ is an endomorphism of , and δ is a σ derivative which is an endomorphism of , \square as a multiplication group, and $\delta(a b)=$ (a) $\delta(b)+\delta(a) b$ for each $a, b \in \square$ The skew polynomial ring over with variable x is a ring, $[x ; \sigma ;]=\left\{f(x)=a_{n} x^{n}+\quad+a_{0} \mid a_{i}\right.$ \} with $x a=\sigma(a) x+\delta(a) ; \cdots a$. An element p of the skew polynomial ring $[x ;]$
 $r \in+=\{0,1, \ldots\}, a i \in \square, i=1, \underset{\forall}{\hat{E}{ }_{\square}} r$.

Based on Shomake (2007), quaternion is a linear combination with real scalars and three units of orthogonal imaginary, denoted by $\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k}, with real coefficients written as $\square=\left\{q=q_{0}\right.$ $\left.\boldsymbol{i} q_{1}+\boldsymbol{j} q_{2}+\boldsymbol{k} q_{3} \mid q_{0}, q_{1}, q_{2}, q_{3} \in \square\right\}$
$\underset{\text { where }}{\boldsymbol{i}} \boldsymbol{j}^{\boldsymbol{r}}$
rule

$$
\boldsymbol{i}^{2}=\boldsymbol{j}^{2}=\boldsymbol{k}^{2}=-+; \quad \boldsymbol{i} \boldsymbol{j}=-\boldsymbol{j} \boldsymbol{i}=
$$

$$
k_{;} j k=-k j=i ; k i=-i k=j . \quad \text { For }
$$ example, $\quad a=a_{0}+a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}_{+} a_{3} \boldsymbol{k}=$ $a_{0} \boldsymbol{a}$ and $\stackrel{b}{\left[b_{0}, \boldsymbol{b}\right]_{\text {with }} \boldsymbol{a} \boldsymbol{b}}{ }^{b_{0}}{ }^{+}{ }^{b_{1} \boldsymbol{i}}+{ }^{b_{2} \boldsymbol{j}}+{ }^{b_{3} \boldsymbol{k}}=$ $\left[\right.$,] with,$\in \square \begin{array}{c}\text { The addition and } \\ a \quad b\end{array}$

$\left[a_{0}+b_{0}, \boldsymbol{a}+\boldsymbol{b}\right]$, 2) $\quad a b=\left[a_{0} b_{0_{+}} \stackrel{\boldsymbol{a}}{=}\right.$. $\left.\boldsymbol{b}, a_{0} \boldsymbol{b}+b_{0} \boldsymbol{a}+\boldsymbol{a} \times \boldsymbol{b}\right]$.

The purpose of this research is to discover the ideal form of the skew polynomial ring over the quaternion ring.

DATA AND METHOD

Research location

This research takes place in Mathematics Department, FMIPA, Hasanuddin University. This is a theoretical research. It is done by finding the form of endomorphism of quaternion ring then every endomorphism form will become the particular ring and we can obtain the ideal form from the ring.

RESULT

The skew polynomial ring that will be arranged is a skew polynomial ring and the base ring is a quaternion denoted as \mathbb{H}. Thus, the first step is to form the endomorphism in quaternion \mathbb{H}.

Theorem 1

For example, $\quad a=a_{0}+a_{1} \boldsymbol{i}+$ $a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k} \in \square$ and $\sigma: \square \rightarrow \square$ we can yield some endomorphism forms in quaternion \mathbb{H}

$$
\begin{aligned}
& \sigma_{1(}(a)=\sigma_{1}\left(a_{0}+a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) \\
& =\left(a_{0}-a_{1} \boldsymbol{i}-a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) \\
& \sigma_{2}(a)=\sigma_{2}\left(a_{0}+a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) \\
& =\left(a_{0} a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}-a_{3} \boldsymbol{k}_{)}\right. \\
& \sigma_{3}\left({ }^{a}\right)=\sigma_{3}\left(a_{0}+a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) \\
& =\left({ }^{a_{0}}+{ }^{a_{1} \boldsymbol{i}}-a_{2} \boldsymbol{j}-{ }^{a_{3} \boldsymbol{k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{clllll}
\sigma_{4} & a & \sigma_{4} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j}
\end{array} a_{3} \boldsymbol{k} \\
& \begin{array}{llll}
a_{0} & a_{2} \boldsymbol{i} & a_{3} \boldsymbol{j} & a_{1} \boldsymbol{k}
\end{array} \\
& \begin{array}{ccccccc}
\sigma_{5} & a & \sigma_{5} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j} & a_{3} \boldsymbol{k}
\end{array} \\
& \begin{array}{llll}
a_{0} & a_{2} \boldsymbol{i} & a_{3} \boldsymbol{j} & a_{1} \boldsymbol{k}
\end{array} \\
& \begin{array}{cccccc}
\sigma_{6} & a & \sigma_{6} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j}
\end{array} a_{3} \boldsymbol{k} \\
& \begin{array}{llll}
a_{0} & a_{2} \boldsymbol{i} & a_{3} \boldsymbol{j} & a_{1} \boldsymbol{k}
\end{array} \\
& \begin{array}{cccccc}
\sigma_{7} & a & \sigma_{7} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j}
\end{array} a_{3} \boldsymbol{k} \\
& \begin{array}{llll}
a_{0} & a_{2} \boldsymbol{i} & a_{3} \boldsymbol{j} & a_{1} \boldsymbol{k}
\end{array} \\
& \begin{array}{cccccc}
\sigma_{8} & a & \sigma_{8} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j}
\end{array} a_{3} \boldsymbol{k} \\
& \begin{array}{llll}
a_{0} & a_{3} \boldsymbol{i} & a_{1} \boldsymbol{j} & a_{2} \boldsymbol{k}
\end{array} \\
& \begin{array}{cccccc}
\sigma_{9} & a & \sigma_{9} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j}
\end{array} a_{3} \boldsymbol{k} \\
& \begin{array}{llll}
a_{0} & a_{3} \boldsymbol{i} & a_{1} \boldsymbol{j} & a_{2} \boldsymbol{k}
\end{array} \\
& \begin{array}{ccllll}
\sigma_{10} & a & \sigma_{10} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j}
\end{array} a_{3} \boldsymbol{k} \\
& \begin{array}{llll}
a_{0} & a_{3} \boldsymbol{i} & a_{1} \boldsymbol{j} & a_{2} \boldsymbol{k}
\end{array} \\
& \begin{array}{cllllll}
\sigma_{11} & a & \sigma_{11} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j} & a_{3} k
\end{array} \\
& \begin{array}{llll}
a_{0} & a_{3} \boldsymbol{i} & a_{1} \boldsymbol{j} & a_{2} \boldsymbol{k}
\end{array} \\
& \sigma_{1} a_{0} \\
& \begin{array}{llllll}
a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j} & a_{3} \boldsymbol{k} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j}
\end{array} \\
& a_{3} k \\
& \begin{array}{lllll}
a & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j} & a_{3} \boldsymbol{k}
\end{array} \\
& \begin{array}{lllll}
b & b_{0} & b_{1} \boldsymbol{i} & b_{2} \boldsymbol{j} & b_{3} \boldsymbol{k}
\end{array} \\
& \begin{array}{ccccc}
\sigma & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j} & a_{3} \boldsymbol{k}
\end{array} \\
& \begin{array}{llll}
a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j} & a_{3} \boldsymbol{k}
\end{array} \\
& \sigma a \quad b \quad \sigma a \quad \sigma b \\
& \sigma a b \quad \sigma a \quad \sigma b \\
& \sigma a \quad b \quad \sigma a \quad \sigma b
\end{aligned}
$$

$\left.\begin{array}{llllll}\sigma a\end{array}\right) \sigma b\left(\begin{array}{llll}\sigma+a_{0} & \boldsymbol{H}_{1} \boldsymbol{i} & \boldsymbol{t}_{2} \boldsymbol{j} & a_{3} \boldsymbol{k}\end{array}\right.$

$$
\Rightarrow\left(b_{0}+b_{1} \boldsymbol{i}+b_{2} \boldsymbol{j}+b_{3} \boldsymbol{k}\right)
$$

()$=\left(\begin{array}{llll}a_{0} & a_{1} \boldsymbol{i} & a_{t j} \boldsymbol{j} & a_{3} k\end{array}\right.$

$$
=\left(\begin{array}{llll}
- & b_{0} & b_{+} i &
\end{array}\right)
$$

$$
()=\left(+\quad+\quad b_{2} j \quad b_{3} k\right.
$$

$$
a_{0} b_{\overline{0}}\left(\begin{array}{lll}
a_{1} b_{1} & a_{2} b_{2} & a_{3} b_{3}
\end{array}\right.
$$

$$
a_{0} b_{1} \quad a_{1} b_{0}
$$

()$=\left(\begin{array}{l}+ \\ + \\ +\end{array} a_{2} b_{7} \quad a_{3} b_{2} i\right.$
()$=\left(+\quad+a_{0} \#_{2} \quad a_{1} b_{3}\right.$
$=\left(+a_{2} b_{0} \quad a_{3} b_{1} \boldsymbol{j}\right.$

$$
a_{0} b_{3} \quad a_{1} b_{2}
$$

$$
=\left(\begin{array}{ll}
-a_{2} b_{T} & \left.a_{3} b_{0} \boldsymbol{k}\right)
\end{array}\right.
$$

()$=\left(\begin{array}{ll}\sigma a b & +\sigma a+\sigma b\end{array}\right)$
()$=(\neq(\neq+\rightarrow)$
()$=(++\quad+\quad)$

$$
=(+\quad-\quad-
$$

Proof

We want to prove that $(+$

$$
+\quad)=\left(\begin{array}{cc}
x \Omega_{1} & -x \sigma_{2+}
\end{array}\right)
$$

$a_{2} \boldsymbol{j} \quad a_{3} \boldsymbol{k}$

$$
\begin{array}{lll}
a & a_{0} & a_{1} i
\end{array}
$$

$$
\begin{gathered}
+\quad \sigma_{1} a \quad \sigma_{1} \quad a_{0} \quad a_{1} \boldsymbol{i} \quad a_{2} \boldsymbol{j} \\
\left.a_{3} \boldsymbol{k}\right) \quad a_{0}=a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}_{+}
\end{gathered}
$$

 Gakterni θ ios $\quad a_{1} i_{+} \quad a_{2} j$) $\quad a_{3} k$
endomorphism סंŋg a_{0} qqateiniom \boldsymbol{j} then it $\begin{array}{lllll}a_{3} \boldsymbol{k} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j} & a_{3} \boldsymbol{k}\end{array}$
If

$$
x\left(\sigma_{1}\right)=x\left(\sigma_{2}\right) \cdot(), x \sigma_{3} \text { is }
$$

an
${ }_{I}^{I}\left(\begin{array}{c}x^{2} \\ + \\ x^{2}\end{array}\right)=\left[\begin{array}{l}x \sigma_{2} \\ \sigma_{1} \\ + \\ + \\ +\end{array}+{ }^{+}+\quad\right)$
$I \quad x^{2} \quad x \quad \sigma_{2}$
$I F^{2}\left(6 x \sigma_{3}^{+}\right)+()+()+(\quad)$
I $\left.\quad x^{\underline{2}}(+x) \sigma_{\overline{3}}(+) \quad\right)$ $-(+)$ $+\operatorname{Iq} x+I^{+(}$ $q x \quad x \sigma_{1}$
$+\quad+$
$\begin{array}{lllll}q x & q_{0} & q_{1} x & q_{2} x^{2} & q_{3} x^{3}\end{array}$
$q_{4} x^{4} \quad q_{t} x^{t} \quad \stackrel{t}{t=0} q_{\pi} x^{n}+q_{n}$
$=\left(\begin{array}{lll}\text { Iq } & \bar{x} & \vec{x}^{2} \\ { }^{+} & x^{+} \sigma_{1}\end{array}+\left[\begin{array}{ll}\sum_{n=0}^{+}+{ }_{n}^{+} \\ q_{n}^{n}\end{array}\right]\right.$

$$
x^{2}\left[\sum_{u+v=0}^{+}{ }_{u}\left({\left(\sigma_{1}^{u}\right.}_{+}^{+} q_{v}\right) x^{+}>\right.
$$

$$
\sum_{u+v=1} u{\left.\underset{+}{ \pm}{ }_{+}^{\ddagger}{ }^{(x} q_{v}\right)+x^{1}-}_{-}
$$

$$
=\left(\begin{array}{cc}
\sum_{u+v=2}-{ }_{u} \dot{\sigma}_{1} \underline{u} q_{v} & \varliminf^{\ngtr 2} \\
\hline & \\
+ & +
\end{array}\right.
$$

$$
\left.\sum_{u+v=3} u \sigma_{4}^{u}\left(q_{v}\right)\right)^{+} x^{3}
$$

$$
\left.\sum_{u+v=s+t}^{u+v=3} u \sigma_{1}^{-(} \quad-\quad q_{v}+x^{s+t}\right]
$$

$I \quad x^{2} \quad x \sigma_{1}$

$$
\begin{aligned}
& +)=()+() \\
& (+)=()+() \\
& x^{2} \sum_{u+v=0} u\left(\sigma_{1}{ }^{u} q_{v}\right) x^{0} \\
& x^{2} \sum_{u+v=1} u\left(\sigma_{1}{ }^{u} q_{v}\right) x^{1} \\
& x^{2} \sum_{u+v=2} u \sigma_{1}{ }^{u} q_{v} \quad x^{2} \\
& x^{2} \sum_{u+v=3} u \sigma_{1}^{u} q_{v} x^{3} \\
& x^{2} \sum_{u+v=s+t} u \sigma_{1}{ }^{u} q_{v} x^{s+t} \\
& \sigma_{1}{ }^{2}\left(\sum_{u+v=0} u\left(\sigma_{1}{ }^{u} q_{v}\right)\right) x^{2} \\
& \sigma_{1}{ }^{2}\left(\sum_{u+v=1} u\left(\sigma_{1}{ }^{u} q_{v}\right)\right) x^{3} \\
& \sigma_{1}{ }^{2}\left(\sum_{u+v=2} u\left(\sigma_{1}^{u} q_{v}\right)\right) x^{4} \\
& \sigma_{1}{ }^{2}\left(\sum_{u+v=3} u\left(\sigma_{1}{ }^{u} q_{v}\right)\right) x^{5} \\
& \sigma_{1}{ }^{2}\left(\sum_{u+v=s+t} u\left(\sigma_{1}^{u} q_{v}\right)\right) x^{s+t+2} \\
& \sigma_{1}{ }^{2} a \quad a
\end{aligned}
$$

Iq x

$$
\left.\begin{array}{l}
\sum_{u+v=0} u\left(\sigma_{1}^{u} q_{v}\right) x^{2} \\
\sum_{u+v=1} u\left(\sigma_{1}^{u} \quad q_{v}\right) x^{3} \\
\sum_{u+v=2} u \sigma_{1}^{u} q_{v}
\end{array} x^{4}\right\}
$$

$$
\begin{aligned}
& + \\
& +(
\end{aligned}
$$

$$
\operatorname{Iq} x
$$

$$
\left[\sum_{n=0}^{s+t} \sum_{u+v=n}^{+} u\left(\sigma_{1}^{u} q_{v}\right) x^{n}\right] x_{72}^{2}
$$

$$
x^{2} q x \quad x^{2}\left[\sum_{n=0}^{t} q_{n} x^{n}\right]
$$

$$
\sigma_{1}^{2} q_{0} x^{2} \quad \sigma_{1}^{2} q_{1} x^{3}
$$

$$
\sigma_{1}^{2} q_{2} x^{4} \quad \sigma_{1}^{2} q_{t} x^{t+2}
$$

$$
q_{0} x^{2} \quad q_{1} x^{3} \quad q_{2} x^{4}
$$

$$
q_{0} x^{t+2}
$$

$$
x^{2} q x \quad\left[\sum_{n=0}^{t} q_{n} x^{n}\right] x^{2}
$$

$$
q x x^{2}
$$

Iq x

$$
\left.\begin{array}{r}
x^{2}\left[\sum_{n=0}^{s+t} \sum_{u+v=n}{ }_{u}\left(\sigma_{1}^{u} q_{v}\right) x^{n}\right. \\
x^{2} \quad x
\end{array} \begin{array}{c}
\sigma_{1}
\end{array}\right]
$$

$\operatorname{Iq} x \quad I$

$$
\begin{array}{lll}
q x & x & \sigma_{1}
\end{array}
$$

$q x \quad q_{0} \quad q_{1} x \quad q_{2} x^{2} \quad q_{3} x^{3}$

$$
\begin{array}{cc}
q_{4} x^{4} & q_{t} x^{t} \\
{ }_{n=0}^{t} q_{n} x^{n} & q_{n}
\end{array}
$$

$$
q x I
$$

$$
\left[\sum_{n=0}^{t} q_{n} x^{n}\right] x^{2} \quad x \quad \sigma_{1}
$$

$$
+\quad-
$$

$$
\begin{aligned}
& \text { ()) () } \left.=\left[\sum_{n=0}^{t} q_{n}^{+} x_{+}^{n}\right]{\stackrel{+}{x_{2}^{2}}}_{+}{ }^{+}{ }_{+1} x^{\prime}\right) \\
& =\left(-\quad-\cdot\left(\stackrel{2}{x^{2}} \underset{{ }_{s} x^{5}}{)^{x^{3}}}\right.\right. \\
& =\left(\left[\sum_{n=0}^{t}-q_{n} x^{n}\right]-\left(\begin{array}{l}
\sigma_{1}{ }^{2} \theta^{+} x^{2}
\end{array}\right)\right. \\
& +\left(\sigma_{1}{ }^{2}{ }_{-}{ }^{2} x^{4}\right) \\
& \sigma_{1}{ }^{+}{ }_{s} x x^{\text {s }+2} \\
& {\left[\sum_{n=0}^{t} q_{n} x^{+p^{n}}\right]\left[\sum_{n=0_{+}}^{s}+_{n} x^{n}\right] x^{2}}
\end{aligned}
$$

The next point prof wild not ${ }^{2}$ be given. It is

$$
\sum_{u+v=1}^{u+v=0} q_{u}\left(\sigma_{1}^{u} \quad v\right) x^{1}
$$

 before.

$$
u+v=3 q_{u}\left(\sigma_{1}{ }^{u} \quad v\right) x^{3}
$$

Theorem 2

 quaternion is given $=\quad+$, and

$$
\left.\left.\begin{array}{cc}
q x I \quad x^{2}\left[\sum _ { n = 0 } ^ { \text { StItch } } \sum _ { u + v = n } ^ { \text { that } } q _ { u } \left(\sigma_{1}^{u}\right.\right. & v
\end{array}\right) x^{n}\right] .
$$

$$
)=\quad+\quad-\quad-
$$

1) We will show that ()\subseteq where () $\in \sigma_{8} \mathbb{\&} ; \Phi_{8} a_{0} \quad a_{1} \boldsymbol{i} \quad a_{2} \boldsymbol{j}$

$$
a_{3} \boldsymbol{k} \quad a_{0} \quad a_{3} \boldsymbol{i} \quad a_{1} \boldsymbol{j} \quad a_{2} \boldsymbol{k}
$$

Suppose that

$$
\begin{aligned}
& x \sigma_{4}+\cdots+x \sigma_{8+=}+\quad,+\in \\
& \square I \quad x^{3} \quad x \sigma_{4}
\end{aligned}
$$

$$
\begin{array}{ccc}
I & x^{3} & x \sigma_{4} \\
I & \left(x^{3}\right)={ }_{x} \sigma_{8}\left[\begin{array}{ll}
{[;}
\end{array}\right]
\end{array}
$$

$$
=\begin{gathered}
I \\
{[\square} \\
x^{3} \\
+\square
\end{gathered} \quad \begin{gathered}
x \sigma_{8}
\end{gathered}
$$

$$
+\cdots+
$$

$$
a_{2} \boldsymbol{j} \quad a_{3} \boldsymbol{k}
$$

$$
\sigma_{5} a \quad \sigma_{5} a_{0} \quad a_{1} \boldsymbol{i} \quad a_{2} \boldsymbol{j}
$$

$$
a_{3} \boldsymbol{k} \quad \begin{array}{llll}
a_{0} & a_{2} \boldsymbol{i} & a_{3} \boldsymbol{j} & a_{1} \boldsymbol{k}
\end{array}
$$

$$
q_{6} a \quad \sigma_{6} \quad a_{0} \quad\left(a_{1} \boldsymbol{j}\right) \quad a_{2} \boldsymbol{j}
$$

$$
a_{3} \boldsymbol{k} \quad a_{0} \quad a_{2} \boldsymbol{i} \quad a_{3} \boldsymbol{j} \quad a_{1} \boldsymbol{k}
$$

$$
\boldsymbol{q}_{7} a \quad \sigma_{7} \quad a_{0}\left(\left(a_{1} \dot{\boldsymbol{x}}\right) x_{2} \dot{\boldsymbol{y}} \cdots\right.
$$

$$
a_{3} \boldsymbol{k} \quad a_{0} \quad a_{2} \boldsymbol{i} \quad a_{3} \boldsymbol{j} \quad a_{1} \boldsymbol{k}
$$

$$
\begin{aligned}
& =\quad \square \\
& x \sigma_{5} \quad x \sigma_{6} \quad x \sigma_{7} \quad x \sigma_{9} \quad x \sigma_{10} \\
& =\quad x \sigma_{11} \\
& \sigma_{5} \sigma_{6} \sigma_{7} \sigma_{9} \sigma_{10} \\
& +\quad \square \\
& \left(\begin{array}{lll}
)^{a} & a_{0} & a_{1} i
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =(\quad+1) \square[; \quad] \\
& =\square[; \quad] \\
& =(+1) \square\left\{\begin{array}{c}
\left.\sigma_{4}\right]
\end{array} \quad x \sigma_{8}\right. \\
& =\quad \square\left[\sigma_{4} \sigma_{\$}\right. \\
& \left.a=\left(a_{0}+a_{1}\right) \boldsymbol{i} \square a_{2} j\right] a_{3} \boldsymbol{k} \\
& \text { Proof } \quad \sigma_{4} a \quad \sigma_{4} a_{0} \quad a_{1} \boldsymbol{i} \quad a_{2} \boldsymbol{j}
\end{aligned}
$$

$$
\begin{aligned}
& \text {, and } \\
& \text { are } \\
& = \\
& \begin{array}{cccc}
\sigma_{9} & a \quad \sigma_{9} & a_{0} & a_{1} \boldsymbol{i}
\end{array} a_{2} \boldsymbol{j} \\
& {\left[\begin{array}{lllll}
; ~ a 13 k & a_{0} & a_{3} \boldsymbol{i} & a_{1} \boldsymbol{j} & a_{2} k
\end{array}\right.} \\
& \begin{array}{llllll}
\sigma_{10} & a & \sigma_{10} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j}
\end{array} \\
& \begin{array}{lllll}
a_{3} k & a_{0} & a_{3} \boldsymbol{i} & a_{1} \boldsymbol{j} & a_{2} \boldsymbol{k}
\end{array} \\
& \begin{array}{llllll}
\sigma_{11} & a & \sigma_{11} & a_{0} & a_{1} \boldsymbol{i} & a_{2} \boldsymbol{j}
\end{array} \\
& \begin{array}{lllll}
a_{3} \boldsymbol{k} & a_{0} & a_{3} \boldsymbol{i} & a_{1} \boldsymbol{j} & a_{2} \boldsymbol{k}
\end{array} \\
& \begin{array}{lllllllll}
x & \sigma_{5} & x & \sigma_{6} & x & \sigma_{7} & x & \sigma_{9} & x \\
\sigma_{10}
\end{array} \\
& x \sigma_{11} \\
& I \quad x^{6} \quad x \quad \sigma_{5} \\
& I \quad x^{6} \quad x \quad \sigma_{5} \\
& I \quad x^{6} \quad x \sigma_{6} \\
& I \quad x^{6} \quad x \quad \sigma_{6} \\
& I \quad x^{6} \quad x \quad \sigma_{7} \\
& \begin{array}{lllll}
I & x^{6} & x & \sigma_{7}
\end{array} \\
& I \quad x^{6} \quad x \quad \sigma_{9} \\
& I \quad x^{6} \quad \begin{array}{llll}
& & \sigma_{9}
\end{array} \\
& I \quad x^{6} \quad x \quad \sigma_{10} \\
& I \quad x^{6} \quad x \quad \sigma_{10} \\
& I \quad x^{6} \quad x \quad \sigma_{11} \\
& I \quad x^{6} \quad \begin{array}{lll}
& & \sigma_{11}
\end{array}
\end{aligned}
$$

() =
 $=\quad+\quad+\quad+\cdots+$
() =

$$
=(\quad)
$$

Then,
$=\quad$)
\subseteq[;]
2) We want to show that () \subseteq, Hence, (() $\ddagger \subseteq[$;]
where $=+$

$$
\begin{aligned}
& \begin{array}{rrr}
& \cdots+ & = \\
\text { Suppose theititr } & , \quad \in \square .
\end{array} \\
& ()+\quad+\quad+ \\
& =+
\end{aligned}
$$

```
+ \square( ( )) +\cdots
+ \square ( ( ))
```

IJEScA vol.3, 1, May 2016

Theorem 3

The skew polynomial rings over quaternion $\square[; \quad$ and $\square[;]$ are given and , are endomorphisms where

$$
\begin{aligned}
& =+\quad+\quad+\quad \in \square^{\text {such that }} \\
& \text { and } \\
& ()=(++ \\
& \text {) }=\quad+
\end{aligned}
$$

The ideal of the skew polynomial rings

$$
\begin{aligned}
& \text { and are } \\
& \left.=\quad \square_{[=} ;\right]^{+}+\quad+ \\
& \text {] } \\
& \square[\text {] }]\left[\left[_{[}^{[;}\right]^{]}\right. \\
& +1) \square[; \quad] \\
& =(+1) \square[\text {; }
\end{aligned}
$$

Theorem 4

The skew $\overline{\bar{p}}$ olynomial rings over quaternion

$$
\square[; \quad], \square[; \quad], \square[; \quad], \square
$$

$\left[\begin{array}{l}{[;]}\end{array}\right]$,
$=\quad(\square)$
() = $\subseteq \square \quad(\square)$
Hence, () \subseteq
Thus, I is an ideal because () and

$$
[; \quad]
$$

are subbing of I.
()

() =	(+	+	+
) $=$	-	-	+	,
() =	(+	+	+
			-	, and
() $\ddagger=$	-(+	+	
			-	+

The ideal $) \stackrel{\text { of }}{=}{ }_{+}$the skew polynomial rings $\stackrel{\text { and }}{\square} ; \quad], \square\left[\right.$ are $\left._{i}\right], \square[;], \square[;]$, \square [

$$
\begin{aligned}
& \square[\text {;] [;] } \\
& \stackrel{\square}{=} \square[;] \\
& \begin{array}{l}
=(+1) \square{ }^{[; ~]} \\
=\square\left[\begin{array}{l}
\text {; }
\end{array}\right]
\end{array} \\
& \begin{array}{l}
\left.=(+1) \square{ }^{[;]}\right] \\
=\square[;]
\end{array} \\
& =(\quad+1) \square{ }^{[; ~]} \\
& \begin{array}{l}
=(+1) \square ; \quad] \\
=\square\left[\begin{array}{l}
\text {] }
\end{array}\right]
\end{array} \\
& =(+1) \square[;]
\end{aligned}
$$

DISCUSSION

$\overline{\bar{T}}\left(\begin{array}{l}\quad+1) \\ \text { The } \\ \text { skew }\end{array}\right]$ polynomial ring over quaternion is a skew polynomial ring with the quaternion and endomorphism ring, denoted by σ, as the base ring. The skew polynomial ring over quaternion is completely defined as a ring formed from polynomial rings with unknown variable x,

$$
\begin{array}{lll}
\left(\begin{array}{l}
\text {) }=\sum
\end{array}\right. & \in \square \\
+\quad+\quad \text { with } & + \\
\text { IJESCA vol.3, 1, May 2016 } & , &
\end{array}
$$

This research provides an endomorphism form σ of quaternion ring. Each of endomorphism forms σ becomes the ring itself. Each of the skew polynomial rings has two ideal forms. Generally, there are three groups of the identic ideals of the ring. Three rings are identic ideals, two rings are the same in the shape, and the last six rings are identic ideals too.

CONCLUSION AND SUGGESTION

The research shows that there are twenty two ideal forms and every ring has two ideals. There are still many possibilities to find more ideal forms from this research. For the next research, we hope the reader can explore other ideal forms besides what are founded in this research.

REFERENCES

[1] Amir A.K. (2010a). Ciri-ciri Ideal Prima dan Gelanggang Polinom Miring. Jurnal Matematika Statistika dan Komputasi, 6: 1-5.
[2] Amir A.K. (2010b). BeberapaSifat Ideal Gelanggang Polinom Miring: Suatu Kajian Pustaka. Jurnal Matematika, 1(1): 16-20.
[3] Amir A.K. (2011). Struktur Ideal Prima dan Gelanggang Faktor dari Gelanggang Polinom Miring Atas Daerah Dedekind (Disertasi). Bandung: ITB.
[4] Amir A.K. Afriani, \&Erawaty N. (2012). Seputar Ideal Gelanggang Polinom Miring. Diakses 2 Februari 2015. Available from: http:// repository.unhas.ac.id/ bitstream/ handle/ 123456789/10283/ SEPUTAR \%20 IDEAL \% 20 DARI \% 20 GELANGGANG \% 20 POLINOM \% 20 MIRING.pdf?sequence $=1$
[5] Amir A.K. (2012). Pembentukan Gelanggang Polinom Miring dari Quaternion. Karunia, 8(2): 99-106.
[6] Fraleigh J.B. (2003). A First Course in Abstract Algebra 7th Edition. New York: Addison-Wesley Publishing Company Inc..
[7] McConnel J.C. dan Robson J.C. (1987).Non Commutative Notherian Rings. New York: John Wiley and Sons, Inc..
[8] Ore O. (1993). Theory of nonCommutative Polynomials. Annals of Math, 34: 480-508.
[9] Rotman J.J. (2010). Advanced Abstract Algebra. United States: Prentice Hall.
[10] Shoemake K. (2007). Quaternions, Lecture Note. United States: Department and Computer and Information Science University of Pennsylvania.

