Effect of Inoculations of *Trichoderma viride* and *Saccharomyces cerevisiae* Mixed Culture on Chemical Composition, Fiber, Digestibility and Theobromine Cocoa Pod Fermentation

Muhammad Askari Zakariah
State Islamic College of Al Mawaddah Warrahmah
Tel: +62-405-2323229 E-mail: m.askari.zakariah@mail.ugm.ac.id

(Received: Sept 3, 2015; Reviewed: Nov 11, 2015; Accepted: Nov 25, 2016)

Abstract: The objective of the study was to identify the effect of *Trichoderma viride* and *Saccharomyces cerevisiae* inoculant on chemical compositions, digestibility, and theobromine concentration of fermented cocoa pod. This experiment consisted of four treatments, namely cocoa pods without fermentation as control (R0); fermentation of cocoa pods with inoculant *T. viride* (R1); fermentation of cocoa pods with inoculant *S. cerevisiae* (R2); and fermentation of cocoa pods with inoculant *T. viride* and *S. cerevisiae* mixed culture (R3). Each treatment had 3 replicates, and then was fermented for 10 days. Variables observed were the chemical compositions i.e dry matter (DM), organic matter (OM), crude protein (CP), ether extract (EE), crude fiber (CF), nitrogen free extract (NFE), fiber fraction (Neutral detergent fiber and acid detergent fiber), *in vitro* digestibility, and theobromine concentration. Data were analysed by one-way analysis of variance and followed by Duncan’s new multiple range test (DMRT), if there were any significant difference. Results showed the inoculum affected (P<0.05) the chemical composition, fiber fraction and *in vitro* digestibility. However, theobromine was not detected on cocoa pod without fermentation and fermentation. Compared to group R0, inoculation with *T. viride* and *S. cerevisiae* mixed culture (P<0.05) resulted in higher DM concentration (92.78% vs 89.72% respectively), higher CP (7.43% vs 5.63% respectively), higher NDF (79.41% vs 61.18% respectively), higher ADF (73.04% vs 47.94% respectively), but was not significantly different on DM and OM digestibility (21.22% vs 22.24%, and 22.67% vs 24.31% respectively) than cocoa pod without fermentation. It is concluded that inoculant *T. viride* and *S. cerevisiae* mixed culture increased CP concentration, but had no effect on *in vitro* digestibility.

Keywords: Cocoa pod; fermentation, *Trichoderma viride*, *Saccharomyces cerevisiae*

1. Introduction

Limited availability of forage makes man look for other alternative feeds as partial or total replacement. Plantation wastes to be one option in dealing with the issue of the lack of forage availability in the dry season, but their waste products could also pollute the environment. According to Ditjen Perkebunan (2012), there were approximately 1,745,789 ha of cocoa plantation in 2011. Cocoa pod contain various minerals. Toharmat *et al.* (2005), reported that feeding cocoa pod to Etawa as a fiber source also provide Mg and Zn in a higher concentration than those provided by grass, bark coffee, and rice straw. Wahyuni *et al.* (2008) reported that fermented cocoa pod could be used as animal feed in growing goats up to the level of 40%. Puastuti *et al.* (2010) reported that a ration based on cocoa pod without ammoni-
tion but with organic Zn supplementation resulted in weight gain equivalent to the daily ration of grass-based, supported by sufficient consumption rate and nutrient digestibility, N retention and good fermentation characteristics. Ginting (2004) reported that pod husks of more than 15% in the ration could reduce performances of goats.

Cocoa plantation wastes such as pod husks are commonly just piled and left to degrade in the field after being harvested. This practice could cause discomfoting odor that cause disease to the cocoa plants. Pod husks contained anti nutritive substances such as theobromine that limits its level of inclusion in the diets. Efforts to improve the nutritive quality of the cocoa pod included, drying, addition of urea (ammoniation), and fermentation. The objective of this study was to investigate the effect of fermenting cocoa pod using different types of inoculant on the chemical composition, digestibility and theobromine concentration. The objective of the study was to identify the effect of Trichoderma viride and Saccharomyces cerevisiae inoculant on chemical compositions, digestibility, and theobromine concentration of fermented cocoa pod.

2. Materials and Method

The experiments were performed at the Laboratory Animal Food Technology, Laboratory of Biochemistry of Nutrition, Food Animal Nutrition Department, Faculty of Animal Science, Gadjah Mada University. Instrument is used included weights capacity 10 kg with sensitivity of 0.1 kg, sealer and vaccum, grinder with sieve diameter’s 1 mm, analytic weights with sensitivity of 0.0001 g, pH meter, digital thermometer, oven, tube, high performance liquid chromatographry Knauer tipe UV 6000 LP. Substance used included cocoa pod, inoculant of L. plantarum, Inoculant of S. cerevisiae, cassava meal, water, chemical for analysis proximate, chemical for parameter ruminal fermentation, chemical for theobromine analysis, and chemical for in vitro digestibility.

2.1 Substrate Preparation, Fermentation and Treatments

Fresh Cocoa pods were collected from a traditional farming Gunung Kidul Regency. Cocoa pods cut to size of 1 x 5 cm and sun-dried for 10 hours to decrease the water concentration. Two species of fungi were used as inoculants, namely Trichoderma viride and Saccharomyces cerevisiae.

Fermentation was conducted at laboratory scale in a room that was sterile. The room was watered with disinfectant, the tools were sterilised with alcohol (90%). Cocoa pods were fermented in fermentor bag (as silo), and inoculation with T. viride and S.cerevisiae was performed at 1% dry matter, by mixing and spreading the inoculant evenly. Each silo was made to be aerobic by making a hole. The length of fermentation was set at 10 days at room temperature (Nelson and Suparjo, 2011; Ginting and Krisnan, 2006).

Three processing treatments and one control treatment were as follows:

- R0: Unfermented cocoa
- R1: Cocoa pod fermentation treatment using T. viride
- R2: Cocoa pod fermentation treatment using S. cerevisiae
R4 Cocoa pod fermentation using *T. viride* + *S. cerevisiae*

2.2 Chemical Analysis

Samples of dried silages were analyzed for their chemical compositions by proximate analyses (AOAC, 2005). Neutral Detergent Fiber (NDF) and Acid Detergent Fiber (ADF) analyses were performed according to the procedures of Van soest, (1987). *In vitro* digestibility study was performed according to the procedures of Tilley and Terry (1963) at Biochemical Nutrition Laboratory, of Animal Science Faculty, the Gadjah Mada University. Theobromine analysis to was conducted as recommended by European Food Safety Authority (2008) using HPLC (AOAC, 2005).

Data of chemical composition, fiber fraction, and *in vitro* digestibility were analyzed by analysis of variance (ANOVA) and followed by Duncan’s new multiple range test (DMRT) if there were any significant differences (Steel et al., 1993). All statistical calculation were performed using software of Statistical Product and Service Solution version 16.0 (Soleh, 2005).

3. **Results and Discussion**

3.1 *Proximate and fiber fraction composition of fermented cocoa pod*

The proximate compositions were shown in Table 1. The fermented cocoa pods had higher dry matter content than that of the unfermented cocoa pod. The Increased dry matter contents of the fermented cocoa pod might be caused by fungal growth in the cocoa pods. The growth of fungi was characteristically slower than that of bacterial *Trichoderma viride* secreted cellulose at day 8, and influenced dry matter concentration. Suparjo *et al.* (2009) reported that fungi would utilized the organic matter from substrate and caused losses in dry matter. Mula-to and Widyatomo (2003) showed that time of fermentation could affect the dry matter concentration of substrates.

Crude protein concentrations were significantly affected by the type of inoculants. Inoculation with *T. viride* have highest effect on crude protein level. Ginting and Krisnan (2006), showed that fermentation using *Trichoderma* sp as an inoculant increased the crude protein concentration of the substrates. In the current experiment the crude protein concentration was lower when treated with *T. viride* and *S. cerevisiae* mixed culture, which could be due to any negative interaction between both of inoculant.

Fungal inoculation significantly increased crude fiber contents of the fermented cocoa pods. This higher crude fiber concentration could be caused by increased composition of cell wall, of the hyfa fungal. Utomo (2001), reported that the crude fiber was organic matter which was divided to cellulose, hemicellulose, and lignin. All of these components were found in the fungal hyfa. Cocoa pods fermentation with *T. viride* and *S. cerevisiae* mixed culture showed higher free extract nitrogen concentrations. During the stationary phase, the *T. viride* used the substrate free extract nitrogen before degrading the cellulose. Kamarat *et al.* (2008) showed that glucose at early phase was used by *T. viride* for growing and then started to degrade the fiber fraction. The fiber fraction are presented in Table 2.
Neutral detergent fiber and acid detergent fiber concentrations were significantly higher in the fermented cocoa pod compared to the unfermented ones. Fungi types affected the NDF and ADF concentration of fermented cocoa pod. Cell wall increased during the prolonged time of fermentation. This result differed to that reported by Alemawor et al. (2009), showing that cocoa pods fermented with Aspergillus niger have lower cell wall contents.

Table 2. Change fiber fraction concentration unfermented cocoa pod (R0), fermented cocoa pod were inoculated T. viride (R1), inoculated S. cerevisiae (R2), inoculated T. viride and S. cerevisiae mixed culture (R3).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Neutral Detergent Fiber</th>
<th>Acid Detergent Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>61,18<sup>a</sup></td>
<td>47,94<sup>a</sup></td>
</tr>
<tr>
<td>R1</td>
<td>74,66<sup>b</sup></td>
<td>67,32<sup>b</sup></td>
</tr>
<tr>
<td>R2</td>
<td>79,36<sup>c</sup></td>
<td>73,93<sup>c</sup></td>
</tr>
<tr>
<td>R3</td>
<td>79,41<sup>c</sup></td>
<td>73,04<sup>c</sup></td>
</tr>
</tbody>
</table>

^{a, b, c and d} different supercripts at the same rows indicate significant difference (<P<0.05)
^{ns} non significant

Table 3. In vitro digestibility of unfermented cocoa pods (R0), fermented cocoa pods inoculated with T. viride (R1), S. cerevisiae (R2), T. viride and S. cerevisiae mixed culture (R3).

<table>
<thead>
<tr>
<th>Variable</th>
<th>DM digestibility</th>
<th>OM digestibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>22,24<sup>b</sup></td>
<td>24,31<sup>b</sup></td>
</tr>
<tr>
<td>R1</td>
<td>10,69<sup>a</sup></td>
<td>12,59<sup>a</sup></td>
</tr>
<tr>
<td>R2</td>
<td>11,71<sup>a</sup></td>
<td>13,57<sup>a</sup></td>
</tr>
<tr>
<td>R3</td>
<td>21,22<sup>ab</sup></td>
<td>22,67<sup>ab</sup></td>
</tr>
</tbody>
</table>

^{a, b and c} different supercripts at the same rows indicate significant difference (<P<0.05)
^{ns} non significant

3.2 In vitro digestibility of cocoa pod fermentation

The effects of fermentation and type of inoculants on the in vitro digestibility are shown in Table 3. In vitro digestibility of substrate dry matter and organic matter were significantly affected by fermentation. Unfermented cocoa pod have higher DM and OM digestibility than those fermented with T. viride, but were not significantly different to than those fermented using inoculant of T. viride and S. cerevisiae as a mixed culture. Utomo (2001), reported that ADF was difficult to be degraded such that it could become an inhibitor in feed. Yunus (1997) reported that factors that affected in vitro digestibility were composition of feed, ruminal fluid temperature, time of incubation and analysis method.

The theobromine concentration of fermented and unfermented cocoa pods are presented in Table 4. Theobromine concen-
tration of unfermented and fermented cocoa pods were not detected by HPLC. This was possibly caused by the pre-preparation procedures including sun dried for 10 hours, this process might have reduced theobromine concentration. Sukha (2003), showed that dried and boiled could decrease theobromine concentration.

Table 4. Theobromine concentrations of unfermented cocoa pods (R0), fermented cocoa pod inoculated with T. viride (R1), S. cerevisiae (R2), T. viride and S. cerevisiae mixed culture (R3).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Theobromine (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>< 0.03</td>
</tr>
<tr>
<td>R1</td>
<td>< 0.03</td>
</tr>
<tr>
<td>R2</td>
<td>< 0.03</td>
</tr>
<tr>
<td>R3</td>
<td>< 0.03</td>
</tr>
</tbody>
</table>

4. Conclusion

Inoculation with T. viride and S. cerevisiae mixed cultures in fermenting cocoa pods affected the chemical composition and fiber fraction. However it does not affect the in vitro digestibility of DM and OM of cocoa pod. The theobromine concentration of the fermented and unfermented were not detected.

References

442 – 448.
